Carregando...

Modelo antifraude na análise de sinistro: use a inteligência da Neoway

Scroll Down

Big Data Analytics e machine learning são indispensáveis para criar modelos antifraude específicos para a análise de sinistros. Entenda melhor neste artigo!

De acordo com levantamento feito pelo Sistema de Quantificação de Fraudes (17º Ciclo), no primeiro semestre de 2019, quase 20% dos sinistros ocorridos no Brasil foram classificados como fraudulentos. O valor destas fraudes comprovadas somou R$ 284,5 milhões, mas há ainda R$ 2,1 bilhões atrelados aos casos suspeitos. Impedir que este alto montante seja gasto com situações forjadas, ou seja, contar com políticas e ações efetivas antifraude, é o grande desafio na análise de sinistro feita pelas seguradoras.

Apenas para relembrar, de acordo com o Código Penal, artigo 171, a fraude consiste em agir com o objetivo de enganar, prejudicar ou ludibriar alguém ou alguma instituição através de artifícios como falsificação de documentos, marcas ou produtos. É crime, portanto, obter vantagem ilícita em prejuízo alheio, induzindo ou mantendo alguém em erro.

A grande questão é que a cada dia os métodos para fraudar o mercado segurador têm se aprimorado, dificultando a sua descoberta. Por isso, para concluir que houve má-fé, o trabalho de verificação vai muito além da inspeção mais básica, antes realizada. Hoje, as empresas deste mercado precisam se apoiar na tecnologia e manter um monitoramento contínuo para prevenir essa prática, já que os fraudadores estão sempre buscando novas formas de burlar o sistema.

Ferramentas de Big Data Analytics e machine learning são exemplos de como a Inteligência Artificial já é indispensável neste processo. É por meio dos inúmeros cruzamentos de dados e predições geradas a partir deles que se pode criar modelos antifraude específicos para a análise de sinistros.

A Neoway e sua inteligência de dados oferecem exatamente este tipo de solução para as seguradoras. É possível antecipar a identificação de fraudes em sinistros a partir de scores personalizados e usar modelos analíticos customizados para ampliar a capacidade de dados, – como as variáveis históricas -, e assim identificar padrões e concentrações de forma visual e intuitiva.

Saiba mais sobre as modelagens Neoway para o mercado segurador.

Solução antifraude Neoway oferece modelagens para a análise de sinistro

A arquitetura macro da solução antifraude da Neoway atua em diferentes frentes, desde a prevenção até o combate às irregularidades. Entenda como modelo de análise é realizado:

  • Prevenção – regras são geradas a partir de análises de sinistros que já foram deflagrados como fraude, impedindo que novas fraudes ocorram com práticas já mapeadas anteriormente;
  • Operação – construção de uma saída específica na plataforma Neoway, com o intuito de auxiliar na análise dos sinistros, fazendo com que as análises aconteçam em uma única plataforma, aumentando a eficácia dos analistas;
  • Resultados – análise e acompanhamento dos resultados gerados, aumentando a visibilidade dos resultados no combate a fraude, facilitando o combate contínuo;
  • Combate – construção de modelos estatísticos para prever possíveis fraudes na análise de sinistros.

Agora, veja de forma mais detalhada algumas funcionalidades e possibilidades em cada uma das frentes de atuação:

  • Network Analysis – análise dos envolvidos no processo e definição dos clusters ;
  • Redes de Relacionamento – análise do relacionamento entre os envolvidos em diferentes etapas do processo;
  • Análise de Similaridade – identificação de padrões atribuídos a diferentes envolvidos;
  • Behavior Analysis – avaliação dos padrões de comportamento;
  • Detecção de Outliers – identificação de comportamentos ou envolvidos “fora do padrão”;
  • Monitoramento Contínuo – identificação de alterações mais sensíveis de comportamento;
  • Segmentation – classificação e análise das fraudes por tipo/objetivo;
  • Continuous Update – reavaliação periódica das soluções em busca de alteração do perfil da fraude;
  • Data Visualization – disponibilização dos dados na plataforma para monitoramento e acompanhamento dos dados.

Como funciona o processo

A primeira etapa do processo é o tratamento das bases e a definição de quais novas informações a seguradora deve verificar numa análise de sinistro, para facilitar a identificação de uma possível fraude. Após isso, são agregados dados Neoway, relativos às pessoas e empresas envolvidas direta ou indiretamente no sinistro.

Com todas as informações de sinistros e pessoas envolvidas nesses processos na plataforma, pode-se criar uma API de integração com a área de sinistros da seguradora. Dessa forma, a cada ocorrência, é possível inserir o CPF na ferramenta e já saber se há correlação com a base de fraudes. Se houver alguma questão de risco, pode ser analisada previamente e, assim, evitar o pagamento de sinistros suspeitos e/ou fraudulentos.

Um exemplo é a observação de reincidência de sinistros irregulares que tenham os mesmos envolvidos. Esta suspeita pode ser levantada com o Behavior Analysis, ao cruzar dados sobre beneficiários, médico/perito examinador, corretoras de seguro, receptoras e reguladoras de DPVAT, e seus sócios e familiares e outras partes que podem estar relacionadas ao sinistro. Desta forma, identificamos correlações suspeitas, que após levantamento feito pela seguradora, se mostraram fraudulentos.

Também é possível fazer marcações na base, dizendo se o sinistro foi fraude ou não. Isso é feito a partir de uma listagem de um ano de sinistros, na qual é desenvolvido um modelo agregando dados e inteligência da Neoway. Depois, uma segunda listagem de sinistros de outro ano (sem marcação) é sobreposta a esta primeira. Com essa base, pode-se testar e descobrir o quanto de sinistros suspeitos são identificados.

Neoway Data Lake

Conforme falamos, além dos dados fornecidos pela seguradora, os modelos antifraude são incrementados com a base Neoway. Esta base conta com informações buscadas em fontes como:

  • Receita Federal
  • Junta Comercial
  • Tribunais de Justiça
  • Conselho Federal de Medicina
  • Histórico Funcional
  • Conselhos de classe
  • Veículos, imóveis, bens
  • QSA de todos os envolvidos e conexões familiares
  • Listas restritivas
  • PEPs
  • Portal da Transparência (bolsa família, seguro desemprego, IRPF)
  • Susep
  • MTE/PIS

Assim, é possível criar uma linha completa de variáveis para dar mais precisão e eficiência na análise dos sinistros. Entre elas, destacamos:

  • Velocity checks
  • Vínculo Societário
  • Processos
  • Correspondência documento/nome
  • Vínculo Cadastral
  • Flags de monitoramento (participação em empresas, bolsa família, PEP, óbito)
  • Validação cadastral
  • Validação de documentos
  • Vínculo empregatício

Portanto, a solução de análise de sinistro da Neoway atua integrando bases e checklists, aumentando as possibilidades de análise com mais dados por meio de APIs, até chegar a construção de uma saída – modelo antifraude personalizado – na plataforma. Nessa saída, conseguimos analisar pessoas envolvidas no processo e entender o porquê de elas representarem um risco alto de fraude, além de ter a identificação de pessoas envolvidas em situações fraudulentas.

Também pode-se realizar um monitoramento das irregularidades, com a criação de BI’s que atendam as especificidades do negócio, facilitando o gerenciamento. Com estas funcionalidades, a eficiência do modelo antifraude Neoway, chega a ser, em média, 45% superior aos utilizados por algumas seguradoras.

É importante ainda destacar que os relatórios e documentações levantados com a inteligência de dados podem servir como provas contra fraudes. A ferramenta gera um dossiê, que aponta dia e hora em que o dado foi acessado — o que possibilita o rastreamento — e armazena essas checagens com segurança. Isso ajuda em casos como em que a pessoa consegue regularizar seu status na Receita Federal depois de cometer a fraude.

Quer conhecer na prática como as soluções antifraude para a análise de sinistro podem ajudar sua seguradora? Solicite agora uma demonstração!